If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7z^2+12z-27=0
a = 7; b = 12; c = -27;
Δ = b2-4ac
Δ = 122-4·7·(-27)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-30}{2*7}=\frac{-42}{14} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+30}{2*7}=\frac{18}{14} =1+2/7 $
| 2(r+4)=3/4(25-8r) | | 4x-0.5x-7=7(0.5x-7) | | (y•2)-21=3 | | 5x-27=5x+7 | | 1800=x+1.25x | | 2.6b+6.15=1.2-6.59 | | 8s-3s-8=7s+10 | | 4j-7j-2=-2j-10 | | 4j-7j-2=2j-10 | | -2+8w=9w+3 | | -3+3f-10=-6f+5 | | -5+5g=1-g | | 28/45=-7/9t | | 9.5-2x5x12X5=46-13 | | 17t+2t+3t–17t=10 | | |5x-2|-9=-6 | | 2.50=5b21 | | 2^n=2965820.801 | | 6x+4=10x+16 | | 0.50x=4.90 | | 11-m=13 | | m/4=-22 | | 5(2x+8)=-12+22 | | (2x-10)+(x-20)=x | | -28/m=2 | | (2x-10)-(x-20)=x | | 0.05(x-250)=200 | | 0.05(x-200)=200 | | t=2*42 | | 10y+17=12y | | 0.35x−0.6=0.1x−1 | | 4-6x=80 |